

To characterize a two-port network requires that we relate the terminal quantities V_1 , V_2 , I_1 , and I_2 in Fig.1.1 (b), out of which two are independent. The various terms that relate these voltages and currents are called *parameters*. There are *six sets* of these parameters:

1) Impedance Parameters (z-parameters)

2) Admittance Parameters (y-parameters)

3) Hybrid Parameters (h-parameters)

4) Inverse Hybrid Parameters (g-parameters)

- 5) Transmission Parameters (ABCD or T parameters)
- 6) Inverse Transmission Parameters (abcd or t parameters)

	University of Diyala Engineering College Electronic Department	Year (2015-2016)	Electrical Circuits 2nd Class Lecturer : Wisam N. AL-Obaidi
	1) <u>Impedance Parameters (z-p</u> Impedance and admittance commonly used in the synth are also useful in the desi impedance-matching network distribution networks. A two-port network may be Fig.2.1 (a) or current-driven From either Fig.2.1 (a) or voltages can be related to the $V_1 = \mathbf{z}_{11}\mathbf{I}_1 + \mathbf{z}_{12}\mathbf{I}_2$ $V_2 = \mathbf{z}_{21}\mathbf{I}_1 + \mathbf{z}_{22}\mathbf{I}_2$	$\begin{bmatrix} \mathbf{J}_{1} \\ \mathbf{J}_{2} \\ \mathbf{J}_{2$	I_1 I_2 V_1 I_2 I_1 I_2 I_1 I_2
	$\begin{bmatrix} \mathbf{V}_2 \end{bmatrix}$ $\begin{bmatrix} \mathbf{Z}_{21} & \mathbf{Z}_{22} \end{bmatrix}$ where the z terms are called The values of the parameters or $\mathbf{I}_2 = 0$ (output port open-circ	<i>impedance parameters</i> , con be evaluated by serviced) as shown in F	or <i>z</i> parameters, and have units of ohms. etting $I_1 = 0$ (input port open-circuited) Fig.2.2. Thus,
	$\mathbf{z}_{11} = \frac{\mathbf{V}_1}{\mathbf{I}_1} \Big _{\mathbf{I}_2 = 0}, \qquad \mathbf{z}_{12}$ $\mathbf{z}_{21} = \frac{\mathbf{V}_2}{\mathbf{I}_1} \Big _{\mathbf{I}_2 = 0}, \qquad \mathbf{z}_{22}$	$= \frac{\mathbf{V}_1}{\mathbf{I}_2} \Big _{\mathbf{I}_1 = 0}$ $= \frac{\mathbf{V}_2}{\mathbf{I}_2} \Big _{\mathbf{I}_1 = 0}$	(2.3)
	Since the <i>z</i> parameters are obtalso called the <i>open-circuit imperiated</i> $\mathbf{z}_{11} = \text{Open-circuit input if}$ $\mathbf{z}_{12} = \text{Open-circuit transfer}$ $\mathbf{z}_{21} = \text{Open-circuit transfer}$ $\mathbf{z}_{22} = \text{Open-circuit output}$ Sometimes \mathbf{z}_{11} and \mathbf{z}_{22} are call <i>impedances</i> . When $\mathbf{z}_{11} = \mathbf{z}_{22}$, the	tained by open-circuiti edance parameters. Speci- impedance er impedance from p er impedance from p t impedance led <i>driving-point impeda</i> e two-port network is s	ing the input or output port, they are ifically, oort 1 to port 2 oort 2 to port 1 (2.4) ances, while z ₁₂ and z ₂₁ are called <i>transfer</i> said to be <i>symmetrical</i> .
X			

1) Impedance Parameters (z-parameters)

$$\mathbf{z}_{11} = \frac{\mathbf{V}_1}{\mathbf{I}_1} \Big|_{\mathbf{I}_2 = 0}, \qquad \mathbf{z}_{12} = \frac{\mathbf{V}_1}{\mathbf{I}_2} \Big|_{\mathbf{I}_1 = 0}$$

$$\mathbf{z}_{21} = \frac{\mathbf{V}_2}{\mathbf{I}_1} \Big|_{\mathbf{I}_2 = 0}, \qquad \mathbf{z}_{22} = \frac{\mathbf{V}_2}{\mathbf{I}_2} \Big|_{\mathbf{I}_1 = 0}$$

$$(2.3)$$

\mathbf{z}_{22} = Open-circuit output impedance

Reciprocal networks 1.1)

When the two-port network is linear and has no dependent sources, the transfer impedances are equal ($z_{12} = z_{21}$), and the two-port is said to be *reciprocal*. This means that if the points of excitation and response are interchanged, the transfer impedances remain the same. As illustrated in Fig.2.3, a two-port is reciprocal if interchanging an ideal voltage source at one port with an ideal ammeter at the other port gives the same ammeter reading. The reciprocal network yields $\mathbf{V} = \mathbf{z}_{12}\mathbf{I}$ when connected as in Fig.2.3 (a), but yields $\mathbf{V} =$ $\mathbf{z_{21}I}$ when connected as in Fig.2.3 (b). This is possible only if $\mathbf{z_{12}} = \mathbf{z_{21}}$.

Any two-port that is made entirely of resistors, capacitors, and inductors must be reciprocal. A reciprocal network can be replaced by the T-equivalent circuit in Fig. Fig.2.4(a). If the network is not reciprocal, a more general equivalent network is shown in Fig.2.4(b); notice that this figure follows directly from Eq. (2.1).

Fig.2.4 (a) T-equivalent circuit (for reciprocal case only), (b) general equivalent circuit.

University of Diyala		Electrical Circuits
Engineering College		2nd Class
Electronic Department	Year (2015-2016)	Lecturer : Wisam N. AL-Obaidi

It should be mentioned that for some two-port networks, the z parameters do not exist because they cannot be described by Eq. (2.1). As an example, consider the ideal transformer of Fig.2.5. The defining equations for the two-port network are:

ansformer of V_1 network are: V_1 I_1

Fig.2.5

 I_2

30 Ω

ww

 40Ω

. Fig. 1

 $\mathbf{V}_1 = \frac{1}{n} \mathbf{V}_2, \qquad \mathbf{I}_1 = -n \mathbf{I}_2 \tag{2}$

Observe that it is impossible to express the voltages in terms of the currents, and vice versa, as Eq. (2.1) requires. Thus, the ideal transformer has *no z parameters*. However, it does have *hybrid parameters*.

 Example 1: Determine the z parameters for the circuit shown.

 Solution:
 20 Ω

 METHOD 1 To determine z_{11} and z_{21} , we apply a voltage source to \circ 20 Ω

 V1
 .(the input port and leave the output port open as in Fig. 2(a),Then

$$\mathbf{z}_{11} = \frac{\mathbf{V}_1}{\mathbf{I}_1} = \frac{(20 + 40)\mathbf{I}_1}{\mathbf{I}_1} = 60 \ \Omega$$

that is, \mathbf{z}_{11} is the input impedance at port 1.

$$\mathbf{z}_{21} = rac{\mathbf{V}_2}{\mathbf{I}_1} = rac{40\mathbf{I}_1}{\mathbf{I}_1} = 40 \ \Omega$$

To find z_{12} and z_{22} , we apply a voltage source V_2 to the output port, and leave the input port open as in Fig. 2(b). Then

$$\mathbf{z}_{12} = \frac{\mathbf{V}_1}{\mathbf{I}_2} = \frac{40\mathbf{I}_2}{\mathbf{I}_2} = 40 \ \Omega, \qquad \mathbf{z}_{22} = \frac{\mathbf{V}_2}{\mathbf{I}_2} = \frac{(30 + 40)\mathbf{I}_2}{\mathbf{I}_2} = 70 \ \Omega$$

Thus,

$$[\mathbf{z}] = \begin{bmatrix} 60 \ \Omega & 40 \ \Omega \\ 40 \ \Omega & 70 \ \Omega \end{bmatrix}$$

METHOD 2 Alternatively, since there is no dependent source in the given circuit, $\mathbf{z}_{12} = \mathbf{z}_{21}$ and we can use Fig. 2.4(a). Comparing Fig. 1 with Fig. 2.4(a), we get

$$\mathbf{z}_{12} = 40 \ \Omega = \mathbf{z}_{21}$$
$$\mathbf{z}_{11} - \mathbf{z}_{12} = 20 \qquad \Rightarrow \qquad \mathbf{z}_{11} = 20 + \mathbf{z}_{12} = 60 \ \Omega$$
$$\mathbf{z}_{22} - \mathbf{z}_{12} = 30 \qquad \Rightarrow \qquad \mathbf{z}_{22} = 30 + \mathbf{z}_{12} = 70 \ \Omega$$

University of Diyala		Electrical Circuits
Electronic Department	Year (2015-2016)	2nd Class Lecturer : Wisam N. AL-Obaidi
2) <u>Admittance Parameters</u> In the previous section v parameters may not exist for there is a need for an alterna such a network. This need r set of parameters, which we terminal currents in terms of either Fig.3.1 (a) or (b), the expressed in terms of the ter $I_1 = y_{11}V_1 + y_{12}V_1$ $I_2 = y_{21}V_1 + y_{22}V_1$	$\begin{bmatrix} \mathbf{y} - parameters \\ \mathbf{y} - parameters \\ \mathbf{y} \\ $	$I_{1} + V_{1} = I_{1} + V_{2} = 0$ (a) (a) (b) (b) (c) (c) (c) (c) (c) (c) (c) (c
The terms are known as the siemens. The values of the paramet circuited) or $V_2 = 0$ (output	admittance parameters (or, siners can be determined by port short-circuited). Thus,	nply, <i>y parameters</i>) and have units of setting $V_1 = 0$ (input port short-
	$ \begin{aligned} \mathbf{I}_{2} &= \frac{\mathbf{I}_{1}}{\mathbf{V}_{2}} \Big _{\mathbf{V}_{1}=0} \\ \mathbf{I}_{2} &= \frac{\mathbf{I}_{2}}{\mathbf{V}_{2}} \Big _{\mathbf{V}_{1}=0} \end{aligned} $ (3.3)	3)
Since the y parameters are also called the <i>short-circuit aa</i> $y_{11} =$ Short-circuit input a $y_{12} =$ Short-circuit transfer $y_{21} =$ Short-circuit transfer $y_{22} =$ Short-circuit output	obtained by short-circuiting <i>Imittance parameters</i> . Specific dmittance r admittance from port 2 to r admittance from port 1 to admittance	g the input or output port, they are cally, port 1 port 2 (3.4)

2) Admittance Parameters (y-parameters)

$$\begin{aligned} \mathbf{I}_1 &= \mathbf{y}_{11} \mathbf{V}_1 + \mathbf{y}_{12} \mathbf{V}_2 \\ \mathbf{I}_2 &= \mathbf{y}_{21} \mathbf{V}_1 + \mathbf{y}_{22} \mathbf{V}_2 \end{aligned} \tag{3.1}$$

$$\begin{bmatrix} \mathbf{I}_1 \\ \mathbf{I}_2 \end{bmatrix} = \begin{bmatrix} \mathbf{y}_{11} & \mathbf{y}_{12} \\ \mathbf{y}_{21} & \mathbf{y}_{22} \end{bmatrix} \begin{bmatrix} \mathbf{V}_1 \\ \mathbf{V}_2 \end{bmatrix} = \begin{bmatrix} \mathbf{y} \end{bmatrix} \begin{bmatrix} \mathbf{V}_1 \\ \mathbf{V}_2 \end{bmatrix}$$

$$\begin{aligned} \mathbf{y}_{11} &= \frac{\mathbf{I}_{1}}{\mathbf{V}_{1}} \Big|_{\mathbf{V}_{2}=0}, \qquad \mathbf{y}_{12} &= \frac{\mathbf{I}_{1}}{\mathbf{V}_{2}} \Big|_{\mathbf{V}_{1}=0} \\ \mathbf{y}_{21} &= \frac{\mathbf{I}_{2}}{\mathbf{V}_{1}} \Big|_{\mathbf{V}_{2}=0}, \qquad \mathbf{y}_{22} &= \frac{\mathbf{I}_{2}}{\mathbf{V}_{2}} \Big|_{\mathbf{V}_{1}=0} \end{aligned}$$
(3.3)

- \mathbf{y}_{12} = Short-circuit transfer admittance from port 2 to port 1
- (3.4) y_{21} = Short-circuit transfer admittance from port 1 to port 2
- y_{22} = Short-circuit output admittance

University of Diyala		Electrical Circuits
Engineering College		2nd Class
Electronic Department	Year (2015-2016)	Lecturer : Wisam N. AL-Obaidi

For a linear two-port network and has no dependent sources, the transfer admittances are equal $(y_{12} = y_{21})$. This can be proved in the same way as for the *z* parameters. A reciprocal network $(y_{12} = y_{21})$ can be modeled by the Π -equivalent circuit in Fig.3.2 (a). If the network is not reciprocal, a more general equivalent network is shown in Fig.3.2 (b).

Fig.3.2 (a) Π -equivalent circuit (for reciprocal case only), (b) general equivalent circuit.

Example 3: Obtain the *y* parameters for the network shown in Fig. **Solution:**

METHOD 1 To find y_{11} and y_{21} , short-circuit the output port and connect a current source I_1 to the input port as in Fig. 2(a). Since the 8- Ω resistor is short-circuited, the 2- Ω resistor is in parallel with the 4- Ω resistor. Hence,

$$\mathbf{V}_1 = \mathbf{I}_1(4 \parallel 2) = \frac{4}{3}\mathbf{I}_1, \qquad \mathbf{y}_{11} = \frac{\mathbf{I}_1}{\mathbf{V}_1} = \frac{\mathbf{I}_1}{\frac{4}{3}\mathbf{I}_1} = 0.75 \text{ S}$$

By current division,

$$-\mathbf{I}_{2} = \frac{4}{4+2}\mathbf{I}_{1} = \frac{2}{3}\mathbf{I}_{1}, \qquad \mathbf{y}_{21} = \frac{\mathbf{I}_{2}}{\mathbf{V}_{1}} = \frac{-\frac{2}{3}\mathbf{I}_{1}}{\frac{4}{3}\mathbf{I}_{1}} = -0.5 \text{ S}$$

To get y_{12} and y_{22} , short-circuit the input port and connect a current source I_2 to the output portas in Fig. 2(b). The 4- Ω resistor is short-circuited so that the 2- Ω and 8- Ω resistors are in parallel.

$$\mathbf{V}_2 = \mathbf{I}_2(8 \parallel 2) = \frac{8}{5}\mathbf{I}_2, \qquad \mathbf{y}_{22} = \frac{\mathbf{I}_2}{\mathbf{V}_2} = \frac{\mathbf{I}_2}{\frac{8}{5}\mathbf{I}_2} = \frac{5}{8} = 0.625 \text{ S}$$

By current division,

$$-\mathbf{I}_{1} = \frac{8}{8+2}\mathbf{I}_{2} = \frac{4}{5}\mathbf{I}_{2}, \qquad \mathbf{y}_{12} = \frac{\mathbf{I}_{1}}{\mathbf{V}_{2}} = \frac{-\frac{4}{5}\mathbf{I}_{2}}{\frac{8}{5}\mathbf{I}_{2}} = -0.5 \text{ S}$$

Fig.2 (a) finding *y*₁₁ &*y*₂₁ (b) finding *y*₁₂ and *y*₂₂

University of Diyala Engineering College		Electrical Circuits 2nd Class
Electronic Department	Year (2015-2016)	Lecturer : Wisam N. AL-Obaidi
or		
$-I_2 = 0.25$	$V_{2} - 15V_{2} = -125V_{2}$	
Hence.		
$\mathbf{y}_{21} = \frac{\mathbf{I}_2}{\mathbf{V}_1}$	$r = \frac{1.25 V_o}{-5 V_o} = -0.25 $ S	
Similarly, we get \mathbf{y}_{12} and \mathbf{y}_{2}	$_2$,using Fig. 2(b). At node 1	
$\frac{0 - \mathbf{V}_o}{8} =$	$2\mathbf{I}_1 + \frac{\mathbf{V}_o}{2} + \frac{\mathbf{V}_o - \mathbf{V}_2}{4}$	
But $\mathbf{I}_1 = \frac{0 - \mathbf{V}_o}{8}$; therefore,		
0 =	$\frac{V_o}{8} + \frac{\mathbf{V}_o}{2} + \frac{\mathbf{V}_o - \mathbf{V}_2}{4}$	
or		
$0 = -\mathbf{V}_o + 4\mathbf{V}_o + 2$	$\mathbf{V}_o - 2\mathbf{V}_2 \Rightarrow \mathbf{V}_2 = 2.$	$5V_o$
Hence,		
$\mathbf{y}_{12} = \frac{\mathbf{I}_1}{\mathbf{V}_2}$	$=\frac{-\mathbf{V}_o/8}{2.5\mathbf{V}_o}=-0.05\ \mathrm{S}$	
At node 2,		
$\frac{\mathbf{V}_{o}}{4}$	$\frac{\mathbf{V}_2}{\mathbf{I}_1} + 2\mathbf{I}_1 + \mathbf{I}_2 = 0$	
or		
$-\mathbf{I}_2 = 0.25 \mathbf{V}_o -$	$\frac{1}{4}(2.5\mathbf{V}_o) - \frac{2\mathbf{V}_o}{8} = -0.625\mathbf{V}_o$,
Thus,		
$\mathbf{y}_{22} = \frac{\mathbf{I}_2}{\mathbf{V}_2}$	$r_{e} = \frac{0.625 \mathbf{V}_{o}}{2.5 \mathbf{V}_{o}} = 0.25 \text{ S}$	
Notice that $\mathbf{y}_{12} \neq \mathbf{y}_{21}$ in this	case, since the network is r	not reciprocal.
I.W.4: Obtain the y param	neters for the circuit in Fig.	
Answer:		6Ω 2Ω
$v_{11} = 0.625 \text{ S},$		\mathbf{i}_{a}
$y_{12} = -0.125 \text{ S},$		
$y_{21} = 0.375 \text{ S},$		$\gtrsim^3 \Omega$ $\checkmark^2 2i_o$
$v_{22} = 0.125 \text{ S}.$		o
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Engineering College Electronic Department	Year (2015-2016)	Electrical Circuits 2nd Class Lecturer : Wisam N. AL-Obaidi
3) <i>Hybrid Parameters (h-parameters (h-parameters) (h-parameters</i>	ers) port network do not alv ters. This third set of p nus, we obtain	ways exist. So there is a need for barameters is based on making $V_1$
$\mathbf{V}_1 = \mathbf{h}_{11}\mathbf{I}_1 + \mathbf{h}_{12}\mathbf{V}_2$ $\mathbf{I}_2 = \mathbf{h}_{21}\mathbf{I}_1 + \mathbf{h}_{22}\mathbf{V}_2$	(4.1)	
or in matrix form $\begin{bmatrix} \mathbf{V}_1 \\ \mathbf{I}_2 \end{bmatrix} = \begin{bmatrix} \mathbf{h}_{11} & \mathbf{h}_{12} \\ \mathbf{h}_{21} & \mathbf{h}_{22} \end{bmatrix} \begin{bmatrix} \mathbf{I}_1 \\ \mathbf{V}_2 \end{bmatrix} = [\mathbf{h}]$	$\begin{bmatrix} \mathbf{I}_1 \\ \mathbf{V}_2 \end{bmatrix} $ (4.2)	
The $h$ terms are known as the $hy$ combination of ratios. They are transistors; it is much easier to n than to measure their $z$ or $y$ param. In fact, we have seen that the idea have $z$ parameters. The ideal tr because Eq. (2.5) conforms with	<i>brid parameters</i> (or, <i>h parameters</i> ), al transformer in Fig. 2 mansformer can be detended to the parameters.	<i>arameters</i> ) because they are a hybrid cribing electronic devices such a y the $h$ parameters of such device 2.5, described by Eq. (2.5), does no scribed by the hybrid parameters of the parameters are determined as
$ \mathbf{h}_{11} = \frac{\mathbf{V}_1}{\mathbf{I}_1} \Big _{\mathbf{V}_2 = 0}, \qquad \mathbf{h}_{12} = \frac{\mathbf{V}_1}{\mathbf{V}_2} \Big _{\mathbf{V}_2 = 0}, \qquad \mathbf{h}_{22} = \frac{\mathbf{I}_2}{\mathbf{V}_2} \Big _{\mathbf{V}_2 = 0}, \qquad \mathbf{h}_{22} = \frac{\mathbf{I}_2}{\mathbf{V}_2} \Big _{\mathbf{V}_2 = 0}, \qquad \mathbf{h}_{22} = \frac{\mathbf{I}_2}{\mathbf{V}_2} \Big _{\mathbf{V}_2 = 0}, \qquad \mathbf{I}_2 = \frac{\mathbf{I}_2}{\mathbf{V}_2} \Big _{\mathbf{V}_2 = 0} \Big$	$\frac{\frac{V_1}{V_2}}{\frac{I_1=0}{V_2}}  _{\mathbf{I}_1=0} $ (4.3)	)
The parameters $\mathbf{h}_{11}$ , $\mathbf{h}_{12}$ , $\mathbf{h}_{21}$ and gain, and an admittance, respectiv $\mathbf{h}_{11}$ = Short-circuit input imped	$\mathbf{h}_{22}$ , represent an imvely. This is why they dance	pedance, a voltage gain, a curren are called the hybrid parameters.
$\mathbf{h}_{12}$ = Open-circuit reverse volt $\mathbf{h}_{21}$ = Short-circuit forward cur	tage gain rrent gain (4.4	4)
$\mathbf{h}_{22} = \mathbf{Open-circuit}$ output adm The procedure for calculating the parameters. We apply a voltage of the appropriate port, short-circuit other port, depending on the part and perform regular circuit analy networks, $\mathbf{h}_{12} = -\mathbf{h}_{12}$ . This can same way as we proved that a	iittance he $h$ parameters is sign or current source to or open-circuit the or rameter of interest, + vsis. For reciprocal v h be proved in the	imilar to that used for the z or y $\mathbf{I}_1$ $\mathbf{h}_{11}$ $\mathbf{I}_2$ $\mathbf{h}_{12}\mathbf{V}_2$ $\mathbf{H}_1$ $\mathbf{h}_{21}\mathbf{I}_1$ $\mathbf{h}_{22}$

## 3) Hybrid Parameters (h-parameters)

$$\mathbf{V}_1 = \mathbf{h}_{11}\mathbf{I}_1 + \mathbf{h}_{12}\mathbf{V}_2$$
$$\mathbf{I}_2 = \mathbf{h}_{21}\mathbf{I}_1 + \mathbf{h}_{22}\mathbf{V}_2$$

$$\begin{bmatrix} \mathbf{V}_1 \\ \mathbf{I}_2 \end{bmatrix} = \begin{bmatrix} \mathbf{h}_{11} & \mathbf{h}_{12} \\ \mathbf{h}_{21} & \mathbf{h}_{22} \end{bmatrix} \begin{bmatrix} \mathbf{I}_1 \\ \mathbf{V}_2 \end{bmatrix} = [\mathbf{h}] \begin{bmatrix} \mathbf{I}_1 \\ \mathbf{V}_2 \end{bmatrix}$$
(4.2)

$$\mathbf{h}_{11} = \frac{\mathbf{V}_1}{\mathbf{I}_1} \Big|_{\mathbf{V}_2 = 0}, \qquad \mathbf{h}_{12} = \frac{\mathbf{V}_1}{\mathbf{V}_2} \Big|_{\mathbf{I}_1 = 0}$$

$$\mathbf{h}_{21} = \frac{\mathbf{I}_2}{\mathbf{I}_1} \Big|_{\mathbf{V}_2 = 0}, \qquad \mathbf{h}_{22} = \frac{\mathbf{I}_2}{\mathbf{V}_2} \Big|_{\mathbf{I}_1 = 0}$$

$$(4.3)$$

# $\mathbf{h}_{22} = \text{Open-circuit output admittance}$



Fig. 4.1 The *h*-parameter equivalent network of a two-port network.

University of Diyala		Electrical Circuits
Engineering College		2nd Class
Electronic Department	Year (2015-2016)	Lecturer : Wisam N. AL-Obaidi

# 4) Inverse Hybrid Parameters (g-parameters)

A set of parameters closely related to the *h* parameters are the *g* parameters or inverse hybrid parameters. These are used to describe the terminal currents and voltages as

$$\mathbf{I}_{1} = \mathbf{g}_{11}\mathbf{V}_{1} + \mathbf{g}_{12}\mathbf{I}_{2}$$

$$\mathbf{V}_{2} = \mathbf{g}_{21}\mathbf{V}_{1} + \mathbf{g}_{22}\mathbf{I}_{2}$$

$$\mathbf{I}_{1}$$

$$\mathbf{I}_{2} = \begin{bmatrix} \mathbf{g}_{11} & \mathbf{g}_{12} \\ \mathbf{g}_{21} & \mathbf{g}_{22} \end{bmatrix} \begin{bmatrix} \mathbf{V}_{1} \\ \mathbf{I}_{2} \end{bmatrix} = [\mathbf{g}] \begin{bmatrix} \mathbf{V}_{1} \\ \mathbf{I}_{2} \end{bmatrix}$$
(5.2)

The values of the g parameters are determined as

$$\mathbf{g}_{11} = \frac{\mathbf{I}_{1}}{\mathbf{V}_{1}} \Big|_{\mathbf{I}_{2}=0}, \qquad \mathbf{g}_{12} = \frac{\mathbf{I}_{1}}{\mathbf{I}_{2}} \Big|_{\mathbf{V}_{1}=0}$$

$$\mathbf{g}_{21} = \frac{\mathbf{V}_{2}}{\mathbf{V}_{1}} \Big|_{\mathbf{I}_{2}=0}, \qquad \mathbf{g}_{22} = \frac{\mathbf{V}_{2}}{\mathbf{I}_{2}} \Big|_{\mathbf{V}_{1}=0}$$

$$(5.3)$$

Thus, the inverse hybrid parameters are specifically called  $\mathbf{g}_{11} = \text{Open-circuit input admittance}$ 

 $\mathbf{g}_{12}$  = Short-circuit reverse current gain

 $\mathbf{g}_{21}$  = Open-circuit forward voltage gain

 $\mathbf{g}_{22}$  = Short-circuit output impedance

 $\mathbf{V}_2$ 

Fig. 5.1 shows the inverse hybrid model of a two-port network. The g parameters are frequently used to model field-effect transistors.

(5.4)



Fig. 5.1 The *g*-parameter model of a two-port network.

Example 5: Find the hybrid parameters for the two-port network of Fig. 1 Solution:

To find  $h_{11}$  and  $h_{21}$ , we short-circuit the output port and connect a current source  $I_1$  to the input port as shown in Fig.2(a).





input port,

$$-60 + 40\mathbf{I}_1 + \mathbf{V}_1 = 0 \implies \mathbf{V}_1 = 60 - 40\mathbf{I}_1$$
 (5)

University of Diyala Engineering College Electronic Department	Year (2015-2016)	Electrical Circuits 2nd Class Lecturer : Wisam N. A.L-Obaidi
Euclionic Deputiment	<i>Itul (2013-2010)</i>	
At the output		
At the output, $\mathbf{L} = 0$	(6)	
$\mathbf{I}_2 = 0$	(0)	
Substituting Eqs. (5) and (	(1) and $(2)$ , we obtain $(2)$	tam
60 - 40	$\mathbf{M}_1 = \mathbf{h}_{11}\mathbf{I}_1 + \mathbf{h}_{12}\mathbf{V}_2$	
or		
60 = (h)	$\mathbf{h}_{11} + 40\mathbf{I}_1 + \mathbf{h}_{12}\mathbf{V}_2$	(7)
and	11 - 12 - 2	
$0 = \mathbf{h}_{21}\mathbf{I}_1 + \mathbf{h}_{22}$	$\mathbf{V}_2 \implies \mathbf{I}_1 = -\frac{\mathbf{h}_{22}}{\mathbf{h}}\mathbf{V}_2$	(8)
Now substituting Eq. (8) int	$\mathbf{H}_{21}$	
row substituting Eq. (8) into		
60 = -(h)	$\frac{\mathbf{h}_{22}}{\mathbf{h}} + \mathbf{h}_{12} \mathbf{V}_2$	
L	$\mathbf{n}_{21}$	
01	60 <b>b</b>	
$\mathbf{V}_{\mathrm{Th}} = \mathbf{V}_2 = \frac{60}{-(\mathbf{h}_{11} + 40)\mathbf{h}_2}$	$\frac{1}{h_{11} + h_{12}} = \frac{1}{h_{12}h_{22} - h_{12}h_{22}}$	$\frac{1}{1}$
Substituting the values of the	k parameters	
Substituting the values of the	o x 10	
$\mathbf{V}_{\mathrm{Th}} = \frac{0}{0}$	$\frac{0 \times 10}{20.21} = -29.69 \text{ V}$	
	20.21	
<b>H.W.6</b> : Find the impedance	e at the input port of the ci	rcuit in Fig
Answer:	e at the input port of the en	
1.6667 kΩ.		
		$\mathbf{h}_{11} = 2 \mathbf{k} \mathbf{\Omega}$
		$\begin{vmatrix} \mathbf{n}_{12} - 10 \\ \mathbf{h}_{21} = 100 \end{vmatrix} \leqslant 50 \ \mathrm{k}\Omega$
		$\mathbf{h}_{22} = 10^{-5} \text{ S}$
		$Z_{in}$
<b>Example 7:</b> Find the <i>g</i> para	ameters as functions of <i>s</i> for	or the circuit in Fig.
Solution:		1H 1F
In the <i>s</i> domain,		
$1 \text{ H} \implies sL = s$	$1 \text{ F} \Rightarrow \frac{1}{2} = \frac{1}{2}$	<pre></pre>
,	sC s	$\Omega^{1}$
To get $\mathbf{g}_{11}$ and $\mathbf{g}_{21}$ , we open-circulate the input to th	rcuit the output port and conn	ect a
, voltage source $\mathbf{v}_1$ to the input point	rt as in Fig. $2(a)$ . From the figure	Fig. 1
$\mathbf{I}_1 =$	$=\frac{\mathbf{V}_1}{\mathbf{a}+1}$	-
	$s \pm 1$	

$$60 = (\mathbf{h}_{11} + 40)\mathbf{I}_1 + \mathbf{h}_{12}\mathbf{V}_2$$
(7)

$$0 = \mathbf{h}_{21}\mathbf{I}_1 + \mathbf{h}_{22}\mathbf{V}_2 \qquad \Rightarrow \qquad \mathbf{I}_1 = -\frac{\mathbf{h}_{22}}{\mathbf{h}_{21}}\mathbf{V}_2 \qquad (8)$$

$$\mathbf{V}_{\text{Th}} = \mathbf{V}_2 = \frac{60}{-(\mathbf{h}_{11} + 40)\mathbf{h}_{22}/\mathbf{h}_{21} + \mathbf{h}_{12}} = \frac{60\mathbf{h}_{21}}{\mathbf{h}_{12}\mathbf{h}_{21} - \mathbf{h}_{11}\mathbf{h}_{22} - 40\mathbf{h}_{22}}$$

$$\mathbf{V}_{\rm Th} = \frac{60 \times 10}{-20.21} = -29.69 \, \rm V$$

#### **H.W.6:** Find the impedance at the input port of the circuit in Fig.



$$1 \text{ H} \implies sL = s, \quad 1 \text{ F} \implies \frac{1}{sC} = \frac{1}{s}$$

$$\mathbf{I}_1 = \frac{\mathbf{V}_1}{s+1}$$

University of Diyala Engineering College Electronic Department	Year (2015-2016)	Electrical Circuits 2nd Class Lecturer : Wisam N. AL-Obaidi
or		
<b>g</b> ₁₁ =	$=\frac{\mathbf{I}_1}{\mathbf{V}_1}=\frac{1}{s+1}$	
By voltage division,		
$V_2$	$=\frac{1}{s+1}\mathbf{V}_1$	
or		
<b>g</b> ₂₁ =	$=\frac{\mathbf{V}_2}{\mathbf{V}_1}=\frac{1}{s+1}$	
To obtain $\mathbf{g}_{12}$ and $\mathbf{g}_{22}$ , we short- ,source $\mathbf{I}_2$ to the output port as	circuit the input port and connect in Fig.2(b). By current division	a curren
$\mathbf{I}_1$ :	$=-\frac{1}{s+1}\mathbf{I}_2$	$\mathbf{I}_1$ $\mathbf{I}_2 = 0$
or	<b>.</b> .	
$g_{12} =$	$\frac{\mathbf{I}_1}{\mathbf{I}_2} = -\frac{1}{s+1}$	$\mathbf{V}_1 \stackrel{\bullet}{=} \qquad \qquad$
Also,		(a)
$V_2 =$	$\mathbf{I}_2\left(\frac{1}{s} + s \parallel 1\right)$	$\mathbf{I}_1$ $\frac{1/s}{s}$
or V 1	$a = a^2 + a + 1$	
$\mathbf{g}_{22} = \frac{\mathbf{v}_2}{\mathbf{I}_2} = \frac{1}{s}$	$+\frac{s}{s+1} = \frac{s+s+1}{s(s+1)}$	$\mathbf{V}_1 = 0$ $\mathbf{V}_1 = 0$
Thus,	1 1 7	(b)
$[\mathbf{g}] = \begin{bmatrix} -\frac{1}{s} \\ -\frac{1}{s} \end{bmatrix}$	$\frac{1}{1+1} - \frac{1}{s+1}$ $\frac{1}{1-1} \frac{s^2 + s + 1}{s+1}$	<b>Fig.2</b> Determining the <i>g</i> parameters in the <i>s</i> domain
	$+1  s(s+1) \  \  \rfloor$	
H.W.7: For the ladder netv	vork in Fig., determine the	g parameters in the $s$ domain.
Answer: $\Gamma s + 2$	1 ]	1 H 1 H
$[\mathbf{g}] = \begin{bmatrix} \overline{s^2 + 3s + 1} & -\overline{s^2 + 3s} \end{bmatrix}$	+3s+1	
$\left\lfloor \frac{1}{s^2 + 3s + 1} - \frac{s(s)}{s^2 + s} \right\rfloor$	$\frac{(+2)}{3s+1}$	
	0	o

University of Diyala Engineering College Electronic Department	Year (2015-20.	2 16) L	Electrical Circuits nd Class ecturer : Wisam N. A	L-Obaidi
E) Transmission Devenuet	and (ARCR as a second s	.)		
Since there are no rest considered independent a generate many sets of pa input port to those at the	trictions on which to and which should be d arameters. Another se output port. Thus,	erminal voltage ependent variat t of parameters	es and currents bles, we expect relates the var	s should be to be able to iables at the
V 1	$\mathbf{V}_1 = \mathbf{A}\mathbf{V}_2 - \mathbf{B}\mathbf{I}_2$ $\mathbf{I}_1 = \mathbf{C}\mathbf{V}_2 - \mathbf{D}\mathbf{I}_2$	(6.1)		
or $\begin{bmatrix} \mathbf{V}_1 \end{bmatrix} = \begin{bmatrix} A \end{bmatrix}$	$\mathbf{A} \mathbf{B} \begin{bmatrix} \mathbf{V}_2 \end{bmatrix} = \begin{bmatrix} \mathbf{T} \end{bmatrix} \begin{bmatrix} \mathbf{V}_2 \end{bmatrix}$	(6.2)		
and $-I_2$ ). Notice that in $I_2$ , because the current is opposed to entering the reasons; when you cascaleaving the two-port. It is the two-port. The transmission parameters and fiber) because they receiving-end variables <i>parameters</i> . They are also talephone systems.	computing the transmission considered to be lead network as in Fig. 1. de two-ports (output the s also customary in the ters are useful in the argument ( $V_2$ and $-I_2$ ). For the known as <b>ABCD</b> parameters and re-	nission paramet ving the netwo 1(b). This is do to input), it is n ne power indus unalysis of trans l variables (V ₁ this reason, t arameters. They	ers $-I_2$ , is used rk, as shown in one merely for a nost logical to t try to consider mission lines (s and $I_1$ ) in t hey are called y are used in th	a rather than Fig. 6.1, as conventional hink of $I_2$ as $I_2$ as leaving such as cable erms of the <i>transmission</i> he design of
The transmission parame	ters are determined as	Idars. I ₁		$-\mathbf{I}_2$
$\mathbf{A} = \frac{\mathbf{V}_1}{\mathbf{V}_2} \Big _{\mathbf{I}_2 = 0}, \qquad \mathbf{B} = -$ $\mathbf{C} = \frac{\mathbf{I}_1}{\mathbf{V}_2} \Big _{\mathbf{I}_2 = 0}, \qquad \mathbf{D} = -$	$ \frac{V_1}{I_2}\Big _{V_2=0}  $ $ \frac{I_1}{I_2}\Big _{V_2=0}  $ (6.3)	• + V ₁	Linear two-port	
Thus, the transmission pa A = Open-circuit voltage	urameters are called, sp e ratio	pecifically,	Fig. 6.1	
$\mathbf{B}$ = Negative short-circu $\mathbf{C}$ = Open-circuit transfe $\mathbf{D}$ = Negative short-circu	uit transfer impedance er admittance uit current ratio	(6.4)		
A and <b>D</b> are dimensionle parameters provide a dire useful in cascaded netwo	ss, <b>B</b> is in ohms, and <b>C</b> ect relationship betwee rks.	C is in siemens. n input and out	Since the transmout variables, th	nission ey are very
		7		

University of Diyala		Electrical Circuits
Engineering College		2nd Class
Electronic Department	Year (2015-2016)	Lecturer : Wisam N. AL-Obaidi

$$\begin{bmatrix} \mathbf{V}_1 \\ \mathbf{I}_1 \end{bmatrix} = \begin{bmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{C} & \mathbf{D} \end{bmatrix} \begin{bmatrix} \mathbf{V}_2 \\ -\mathbf{I}_2 \end{bmatrix} = [\mathbf{T}] \begin{bmatrix} \mathbf{V}_2 \\ -\mathbf{I}_2 \end{bmatrix}$$
(6.2)

$$\mathbf{A} = \frac{\mathbf{V}_1}{\mathbf{V}_2} \Big|_{\mathbf{I}_2=0}, \qquad \mathbf{B} = -\frac{\mathbf{V}_1}{\mathbf{I}_2} \Big|_{\mathbf{V}_2=0}$$

$$\mathbf{C} = \frac{\mathbf{I}_1}{\mathbf{V}_2} \Big|_{\mathbf{I}_2=0}, \qquad \mathbf{D} = -\frac{\mathbf{I}_1}{\mathbf{I}_2} \Big|_{\mathbf{V}_2=0}$$
(6.3)



- $\mathbf{A} = \mathbf{Open-circuit}$  voltage ratio
- $\mathbf{B} =$ Negative short-circuit transfer impedance

University of Diyala		Electrical Circuits
Engineering College		2nd Class
Electronic Department	Year (2015-2016)	Lecturer : Wisam N. AL-Obaidi

 $\mathbf{\mathcal{W}}$ 

## 6) Inverse Transmission Parameters (t parameters)

ᢙᢙᡐᢙᢙᢙᢙᢙᢙᢙᢙᢙᢙᢙᢙ

Our last set of parameters may be defined by expressing the variables at the output port in terms of the variables at the input port. We obtain

$$\mathbf{V}_2 = \mathbf{a}\mathbf{V}_1 - \mathbf{b}\mathbf{I}_1$$
$$\mathbf{I}_2 = \mathbf{c}\mathbf{V}_1 - \mathbf{d}\mathbf{I}_1$$

(7.1)

or

$$\begin{bmatrix} \mathbf{V}_2 \\ \mathbf{I}_2 \end{bmatrix} = \begin{bmatrix} \mathbf{a} & \mathbf{b} \\ \mathbf{c} & \mathbf{d} \end{bmatrix} \begin{bmatrix} \mathbf{V}_1 \\ -\mathbf{I}_1 \end{bmatrix} = \begin{bmatrix} \mathbf{t} \end{bmatrix} \begin{bmatrix} \mathbf{V}_1 \\ -\mathbf{I}_1 \end{bmatrix}$$
(7.2)

The parameters **a**, **b**, **c**, and **d** are called the *inverse transmission*, or *t*, *parameters*. They are determined as follows:

$$\mathbf{a} = \frac{\mathbf{V}_2}{\mathbf{V}_1} \Big|_{\mathbf{I}_1 = 0}, \qquad \mathbf{b} = -\frac{\mathbf{V}_2}{\mathbf{I}_1} \Big|_{\mathbf{V}_1 = 0}$$
  
$$\mathbf{c} = \frac{\mathbf{I}_2}{\mathbf{V}_1} \Big|_{\mathbf{I}_1 = 0}, \qquad \mathbf{d} = -\frac{\mathbf{I}_2}{\mathbf{I}_1} \Big|_{\mathbf{V}_1 = 0}$$
(7.3)

The inverse transmission parameters are known individually as

- **a** = Open-circuit voltage gain
- $\mathbf{b} = \text{Negative short-circuit transfer impedance}$  (7.4)
- $\mathbf{c} = \mathbf{Open-circuit}$  transfer admittance

**d** = Negative short-circuit current gain

While **a** and **d** are dimensionless, **b** and **c** are in ohms and siemens, respectively. In terms of the transmission or inverse transmission parameters, a network is reciprocal if

$$AD - BC = 1$$
,  $ad - bc = 1$ 

These relations can be proved in the same way as the transfer impedance relations for the z parameters.

(7.5)

**Example 8:** Find the transmission parameters for the two-port network in Fig.

University of Diyala Engineering College Electronic Department	Year (2015-2016)	Electrical Circuits 2nd Class Lecturer : Wisam N. AL-Obaidi
Solution:		
To determine A and C, we leave the that $I_2 = 0$ and place a voltage	output port open as in Fig. 2(a),s source $V_1$ at the input port. We	o have $I_1 \to I_0 \Omega$ $I_1 \to I_2$
<b>V</b> ₁ = $(10 + 20)$ <b>I</b> ₁ = $30$ <b>I</b> ₁ a Thus	and $\mathbf{V}_2 = 20\mathbf{I}_1 - 3\mathbf{I}_1 = 171$	
$\mathbf{A} = \frac{\mathbf{V}_1}{\mathbf{V}_2} = \frac{30\mathbf{I}_1}{17\mathbf{I}_1} = 1.765,$	$\mathbf{C} = \frac{\mathbf{I}_1}{\mathbf{V}_2} = \frac{\mathbf{I}_1}{17\mathbf{I}_1} = 0.0588 \text{ S}$	.Fig. 1
To obtain <b>B</b> and <b>D</b> , we short-circu shown in Fig. 2 (b) and place a vo At node $a$ in the circuit of Fig. 2(b)	in the output port so that $V_2 =$ ltage source $V_1$ at the input , KCL gives	0 as port.
$\frac{\mathbf{V}_1 - \mathbf{V}_a}{10} -$	$\frac{\mathbf{V}_a}{20} + \mathbf{I}_2 = 0 \tag{1}$	
But $\mathbf{V}_a = 3\mathbf{I}_1$ and $\mathbf{I}_1 = (\mathbf{V}_1 - \mathbf{V}_2)$	$V_a$ )/10. Combining these g	ives
$\mathbf{V}_a = 3\mathbf{I}$	$\mathbf{V}_1 = 13\mathbf{I}_1$	(2),
Substituting $\mathbf{V}_a = 3\mathbf{I}_1$ into Eq with $\mathbf{I}_1$ ,	. (1) and replacing the first te	erm
$\mathbf{I}_1 - \frac{3\mathbf{I}_1}{20} + \mathbf{I}_2 =$	$0  \Rightarrow  \frac{17}{20}\mathbf{I}_1 = -\mathbf{I}_2$	
Therefore,		
$\mathbf{D} = -\frac{\mathbf{I}_1}{\mathbf{I}_2} = \frac{20}{17} = 1.176,$	$\mathbf{B} = -\frac{\mathbf{V}_1}{\mathbf{I}_2} = \frac{-13\mathbf{I}_1}{(-17/20)\mathbf{I}_1} =$	= 15.29 Ω
	$\mathbf{I}_1$ $\mathbf{I}_2$ $\mathbf$	$\overbrace{a}^{\mathbf{I}_{1}} 10 \Omega  \mathbf{V}_{a} \qquad \overbrace{a}^{\mathbf{3I}_{1}} \underbrace{\mathbf{I}_{2}}_{a}$
$\mathbf{V}_1$	$\mathbf{v}_2$ $\mathbf{v}_1$ $\mathbf{v}_2$	$\mathbf{v}_2 = 0$
(a) . <b>Fig. 2</b> (a	) finding <b>A</b> and <b>C</b> , (b) findin	(b) ng <b>B</b> and <b>D</b>
<b>H.W.8:</b> Find the transmission	parameters for the circuit i	n Fig. shown in <b>H.W.3</b>
<b>Answer:</b> <b>A</b> = 1.5, <b>B</b> = 22 $\Omega$ , <b>C</b> =	$125 \text{ mS}, \mathbf{D} = 2.5.$	
		~~~~

ᠵᡐᡐᡐᡐᡐᡐᡐᡐᡐᡐᡐᡐᡐ

Solution:

$$\mathbf{V}_1 = (10 + 20)\mathbf{I}_1 = 30\mathbf{I}_1$$
 and $\mathbf{V}_2 = 20\mathbf{I}_1 - 3\mathbf{I}_1 = 17\mathbf{I}_1$

$$\mathbf{A} = \frac{\mathbf{V}_1}{\mathbf{V}_2} = \frac{30\mathbf{I}_1}{17\mathbf{I}_1} = 1.765, \qquad \mathbf{C} = \frac{\mathbf{I}_1}{\mathbf{V}_2} = \frac{\mathbf{I}_1}{17\mathbf{I}_1} = 0.0588 \text{ S}$$

$$\frac{\mathbf{V}_1 - \mathbf{V}_a}{10} - \frac{\mathbf{V}_a}{20} + \mathbf{I}_2 = 0$$
 (1)

$$\mathbf{V}_a = 3\mathbf{I}_1 \qquad \mathbf{V}_1 = 13\mathbf{I}_1 \tag{2},$$

$$\mathbf{I}_1 - \frac{3\mathbf{I}_1}{20} + \mathbf{I}_2 = 0 \qquad \Rightarrow \qquad \frac{17}{20}\mathbf{I}_1 = -\mathbf{I}_2$$

\bigotimes			
	University of Diyala Engineering College Electronic Department	Year (2015-2016)	Electrical Circuits 2nd Class Lecturer : Wisam N. AL-Obaidi

,The equivalent circuit is shown in Fig. 2(c). For maximum power transfer

$$R_L = \mathbf{Z}_{\mathrm{Th}} = 8 \ \Omega$$

$$P = I^2 R_L = \left(\frac{\mathbf{V}_{\text{Th}}}{2R_L}\right)^2 R_L = \frac{\mathbf{V}_{\text{Th}}^2}{4R_L} = \frac{100}{4 \times 8} = 3.125 \text{ W}$$

H.W.9: Find I_1 and I_2 if the transmission parameters for the two-port in Fig.

╱╱╢╲╢╲╢╲╢╲╢╲╢╲╢╲╲╲╲╢╲╢╲╢╲╢╲╢╲╢╲

University of Diyala Engineering College		Electrical Circuits 2nd Class
Electronic Department	Year (2015-2016)	Lecturer : Wisam N. AL-Obaidi
7) <u>Relationships Between P</u>	Parameters	
Since the six sets of parame	ters relate the same input and	l output terminal variables of the
same two-port network, the	y should be interrelated.	
$\begin{bmatrix} \mathbf{V}_1 \\ \mathbf{V}_2 \end{bmatrix} =$	$\begin{bmatrix} \mathbf{z}_{11} & \mathbf{z}_{12} \\ \mathbf{z}_{21} & \mathbf{z}_{22} \end{bmatrix} \begin{bmatrix} \mathbf{I}_1 \\ \mathbf{I}_2 \end{bmatrix} = \begin{bmatrix} \mathbf{z} \end{bmatrix} \begin{bmatrix} \mathbf{I}_1 \\ \mathbf{I}_2 \end{bmatrix}$	(8.1)
or		
[$\begin{bmatrix} \mathbf{I}_1 \\ \mathbf{I}_2 \end{bmatrix} = \begin{bmatrix} \mathbf{z} \end{bmatrix}^{-1} \begin{bmatrix} \mathbf{V}_1 \\ \mathbf{V}_2 \end{bmatrix}$	(8.2)
,Also, from Eq. (5.2)		
$\begin{bmatrix} \mathbf{I}_1 \\ \mathbf{I}_2 \end{bmatrix} = \begin{bmatrix} \mathbf{I}_1 \\ \mathbf{I}_2 \end{bmatrix}$	$ \begin{bmatrix} \mathbf{y}_{11} & \mathbf{y}_{12} \\ \mathbf{y}_{21} & \mathbf{y}_{22} \end{bmatrix} \begin{bmatrix} \mathbf{V}_1 \\ \mathbf{V}_2 \end{bmatrix} = \begin{bmatrix} \mathbf{y} \end{bmatrix} \begin{bmatrix} \mathbf{V}_1 \\ \mathbf{V}_2 \end{bmatrix} $	(8.3)
Comparing Eqs. (8.2) and	(8.3), we see that	
	$[y] = [z]^{-1}$	(8.4)
The adjoint of the [z] ma	trix is	
	$\begin{bmatrix} \mathbf{z}_{22} & -\mathbf{z}_{12} \end{bmatrix}$	
	$\begin{bmatrix} -22 & -12 \\ -\mathbf{Z}_{21} & \mathbf{Z}_{11} \end{bmatrix}$	
and its determinant is		
$= 7 \cdot 7 \cdot 7 = 7 \cdot 7 \cdot \Lambda$		
$z = \boldsymbol{z}_{11}\boldsymbol{z}_{22} \boldsymbol{z}_{12}\boldsymbol{z}_{21}\boldsymbol{\Delta}$		
Substituting these intoEq.	(8.4), we get	
	$\begin{bmatrix} z_{22} & -z_{12} \end{bmatrix}$	
y ₁₁	$\mathbf{y}_{12} = \frac{\begin{bmatrix} -\mathbf{z}_{21} & \mathbf{z}_{11} \end{bmatrix}}{\begin{bmatrix} -\mathbf{z}_{21} & \mathbf{z}_{11} \end{bmatrix}}$	(8.5)
y ₂₁	\mathbf{y}_{22} Δ_z	(010)
Equating terms yields		
$\mathbf{y}_{11} = \frac{\mathbf{z}_{22}}{\Delta_z}, \qquad \mathbf{y}_{12} = -\frac{\mathbf{z}_{22}}{\Delta_z}$	\mathbf{x}_{12} , $\mathbf{y}_{21} = -\frac{\mathbf{z}_{21}}{\Delta_z}$, \mathbf{y}_{22}	$_{22}=\frac{\mathbf{z}_{11}}{\Delta_z} \textbf{(8.6)}$

7) Relationships Between Parameters

 $\mathbf{\hat{\mathbf{A}}} = \mathbf{\hat{\mathbf{A}}} + \mathbf{\hat$

$$\begin{bmatrix} \mathbf{V}_1 \\ \mathbf{V}_2 \end{bmatrix} = \begin{bmatrix} \mathbf{z}_{11} & \mathbf{z}_{12} \\ \mathbf{z}_{21} & \mathbf{z}_{22} \end{bmatrix} \begin{bmatrix} \mathbf{I}_1 \\ \mathbf{I}_2 \end{bmatrix} = \begin{bmatrix} \mathbf{z} \end{bmatrix} \begin{bmatrix} \mathbf{I}_1 \\ \mathbf{I}_2 \end{bmatrix}$$
(8.1)

$$\begin{bmatrix} \mathbf{I}_1 \\ \mathbf{I}_2 \end{bmatrix} = \begin{bmatrix} \mathbf{z} \end{bmatrix}^{-1} \begin{bmatrix} \mathbf{V}_1 \\ \mathbf{V}_2 \end{bmatrix}$$
(8.2)

$$\begin{bmatrix} \mathbf{I}_1 \\ \mathbf{I}_2 \end{bmatrix} = \begin{bmatrix} \mathbf{y}_{11} & \mathbf{y}_{12} \\ \mathbf{y}_{21} & \mathbf{y}_{22} \end{bmatrix} \begin{bmatrix} \mathbf{V}_1 \\ \mathbf{V}_2 \end{bmatrix} = \begin{bmatrix} \mathbf{y} \end{bmatrix} \begin{bmatrix} \mathbf{V}_1 \\ \mathbf{V}_2 \end{bmatrix}$$
(8.3)

$$[y] = [z]^{-1}$$
 (8.4)

$$\begin{bmatrix} \mathbf{z}_{22} & -\mathbf{z}_{12} \\ -\mathbf{z}_{21} & \mathbf{z}_{11} \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{y}_{11} & \mathbf{y}_{12} \\ \mathbf{y}_{21} & \mathbf{y}_{22} \end{bmatrix} = \frac{\begin{bmatrix} \mathbf{z}_{22} & -\mathbf{z}_{12} \\ -\mathbf{z}_{21} & \mathbf{z}_{11} \end{bmatrix}}{\Delta_z}$$
(8.5)

University of Diyala		Electrical Circuits
Engineering College		2nd Class
Electronic Department	Year (2015-2016)	Lecturer : Wisam N. AL-Obaidi

As a second example, let us determine the h parameters from the z, parameters. From Eq. (2.1)

$$\mathbf{V}_1 = \mathbf{z}_{11}\mathbf{I}_1 + \mathbf{z}_{12}\mathbf{I}_2$$
 (8.7a)

$$\mathbf{V}_2 = \mathbf{z}_{21}\mathbf{I}_1 + \mathbf{z}_{22}\mathbf{I}_2 \tag{8.7b}$$

,Making I2 the subject of Eq. (8.7b)

$$\mathbf{I}_2 = -\frac{\mathbf{z}_{21}}{\mathbf{z}_{22}}\mathbf{I}_1 + \frac{1}{\mathbf{z}_{22}}\mathbf{V}_2$$
(8.8)

,Substituting this into Eq. (8.7a)

$$\mathbf{V}_1 = \frac{\mathbf{z}_{11}\mathbf{z}_{22} - \mathbf{z}_{12}\mathbf{z}_{21}}{\mathbf{z}_{22}}\mathbf{I}_1 + \frac{\mathbf{z}_{12}}{\mathbf{z}_{22}}\mathbf{V}_2$$
(8.9)

,Putting Eqs. (8.8) and (8.9) in matrix form

$$\begin{bmatrix} \mathbf{V}_1 \\ \mathbf{I}_2 \end{bmatrix} = \begin{bmatrix} \frac{\Delta_z}{\mathbf{z}_{22}} & \frac{\mathbf{z}_{12}}{\mathbf{z}_{22}} \\ -\frac{\mathbf{z}_{21}}{\mathbf{z}_{22}} & \frac{1}{\mathbf{z}_{22}} \end{bmatrix} \begin{bmatrix} \mathbf{I}_1 \\ \mathbf{V}_2 \end{bmatrix}$$
(8.10)

,From Eq. (4.2)

$$\begin{bmatrix} \mathbf{V}_1 \\ \mathbf{I}_2 \end{bmatrix} = \begin{bmatrix} \mathbf{h}_{11} & \mathbf{h}_{12} \\ \mathbf{h}_{21} & \mathbf{h}_{22} \end{bmatrix} \begin{bmatrix} \mathbf{I}_1 \\ \mathbf{V}_2 \end{bmatrix}$$

Comparing this with Eq.(8.10), we obtain

$$\mathbf{h}_{11} = \frac{\Delta_z}{\mathbf{z}_{22}}, \qquad \mathbf{h}_{12} = \frac{\mathbf{z}_{12}}{\mathbf{z}_{22}}, \qquad \mathbf{h}_{21} = -\frac{\mathbf{z}_{21}}{\mathbf{z}_{22}}, \qquad \mathbf{h}_{22} = \frac{1}{\mathbf{z}_{22}}$$
 (8.11)

Table 8.1 provides the conversion formulas for the six sets of twoport parameters. Given one set of parameters, Table 8.1 can be used to find other parameters. For example, given the *T* parameters, we find the . corresponding *h* parameters in the fifth column of the third row

Universi Engineer	ty of I ing Co	Diyala llege								Elect 2nd C	rical Cii lass	rcuits			
Electron	ic Depo	artment			(Year (20	15-201	6)		Lectur	er:Wis	sam N.	AL-(Obaidi	
		- J	c ∣a	- q	ۍ اح	∞ –	ສ ∣ ເ	- p	q p	م, م	Δ_{i} a	q		σ	
	t	c d	د ک	ຍ∣ອ	$-\frac{\Delta}{\mathbf{b}}$	a e	a /	ς c	$\mathbf{d} \mid \Delta'$	$\frac{\mathbf{d}}{\Delta_{\prime}}$	کر م	5		J	
		$\frac{\Delta_T}{\mathbf{C}}$	D	$-\frac{\Delta_T}{\mathbf{B}}$	A A	$\mathbf{D}^{ I_{T} }$	DIC	$-rac{\Delta_T}{f A}$	A	В	D	a ~	\mathbf{A}^{T}	$\overline{\Delta_T}$	
Ċ	Т	$\frac{A}{C}$	C -	B	B -	D B	- D	AIC	$\mathbf{A}^{ - }$	A	С	D	C d	$\overline{\Delta_T}$	
R		- <mark>g</mark> 12 g11	$\left \Delta _{ m g} ight _{ m 11}$	$\frac{g_{12}}{g_{22}}$	$\frac{1}{\mathbf{g}_{22}}$	$-rac{{f g}_{12}}{\Delta_g}$	Δ_{g}^{11}	g 12	g 22	g 22 g 21	$ \Delta_g _{g}$	9 22	8 12	- g ₁₂	
	50	5 11	<u>g</u> 21 g11	$rac{oldsymbol{\Delta}_g}{oldsymbol{g}_{22}}$	- <mark>g</mark> 21 g22	$\Delta_g^{\mathbf{g}_{22}}$	$-rac{{f g}_{21}}{\Delta_g}$	g 11	g 21	$\frac{1}{\mathbf{g}_{21}}$	ຫ ສຸດ 11 10 21	$-\Delta_g$	11 20 20 20 20 20 20 20 20 20 20 20 20 20 2	g 12	
		$\frac{\mathbf{h}_{12}}{\mathbf{h}_{22}}$	$\frac{1}{\mathbf{h}_{22}}$	$-\frac{{f h}_{12}}{{f h}_{11}}$	$rac{\Delta_h}{\mathbf{h}_{11}}$	h ₁₂	\mathbf{h}_{22}	$-rac{\mathbf{h}_{12}}{\Delta_h}$	$\frac{\mathbf{h}_{11}}{\Delta_h}$	$-\frac{\mathbf{h}_{11}}{\mathbf{h}_{21}}$	$-\frac{1}{\mathbf{h}_{21}}$	- - -	Δ_h	h ₁₂	D – BC
	h	$rac{\Delta_h}{\mathbf{h}_{22}}$	$-\frac{\mathbf{h}_{21}}{\mathbf{h}_{22}}$	- - -	$\frac{\mathbf{h}_{21}}{\mathbf{h}_{11}}$	h	\mathbf{h}_{21}	$rac{\mathbf{h}_{22}}{\Delta_h}$	$-rac{\mathbf{h}_{21}}{\Delta_h}$	$-rac{\Delta_h}{\mathbf{h}_{21}}$	$-\frac{\mathbf{h}_{22}}{\mathbf{h}_{21}}$	· _	h_{22}	h ₁₂	$\Delta_T = \mathbf{A}$
ameters		$-\frac{\mathbf{y}_{12}}{\Delta_y}$	$\frac{\mathbf{y}_{11}}{\Delta_y}$	y 12	y 22	$-\frac{y_{12}}{y_{11}}$	$\frac{\Delta_y}{\mathbf{y}_{11}}$	<u> </u>	1 <u>V</u> 22	$-\frac{1}{\mathbf{y}_{21}}$	$-\frac{y_{11}}{y_{21}}$		y 12 y 22	- <u>y</u> 12	- h ₁₂ h ₂₁ ,
port par	y	$\frac{\mathbf{y}_{22}}{\Delta_y}$	$-rac{\mathbf{y}_{21}}{\mathbf{\Delta}_y}$	y 11	y 21	$\frac{1}{\mathbf{y}_{11}}$	$\frac{\mathbf{y}_{21}}{\mathbf{y}_{11}}$	$\frac{\Delta_y}{\mathbf{Y}_{22}}$	$-\frac{y_{21}}{y_{22}}$	$-\frac{\mathbf{y}_{22}}{\mathbf{y}_{21}}$	$-\frac{\Delta_y}{\mathbf{y}_{21}}$	- <u>y</u> 11	Δ_y^{12}	- <u> </u>	$h = \mathbf{h}_{11}\mathbf{h}_{22}$
of two-		Z 12	Z 22	$-rac{\mathbf{z}_{12}}{\Delta_z}$	$\Delta_z^{\mathbf{Z}_{11}}$	Z 12 Z 22	$\frac{1}{\mathbf{z}_{22}}$	$-\frac{\mathbf{z}_{12}}{\mathbf{z}_{11}}$	$\left {{\Delta _z } \over {{f z}_{11}}} ight $	$\left {f \Delta_z} ight _Z$	z ₂₂ z ₂₁	$ \nabla_z $	z 12 Z 11	Z 12	${}^{\mathbf{z}}{}^{\mathbf{z}_{21}}, \Delta$
e 8.1 version	Z	Z 11	Z ₂₁	$rac{\mathbf{z}_{22}}{\Delta_z}$	$-rac{\mathbf{z}_{21}}{\Delta_z}$	$rac{oldsymbol{\Delta}_z}{oldsymbol{Z}_{22}}$	- Z ₂₁ Z ₂₂	$\frac{1}{\mathbf{z}_{11}}$	$\frac{\mathbf{z}_{21}}{\mathbf{z}_{11}}$	$\frac{\mathbf{z}_{11}}{\mathbf{z}_{21}}$	$\frac{1}{\mathbf{z}_{21}}$	Z 22	z 12	Z 12	z ₁₁ z ₂₂ - z ₁₃
Con		z		y		Ч		ac		T		t			$\Delta_z = 1$
						<		>							

University of Diyala Engineering College		Electrical Circuits 2nd Class
Electronic Department	Year (2015-2016)	Lecturer : Wisam N. AL-Obaidi
		4
table to express this condition	on in terms of other paramet	ters. It can also
be shown that		
	$[\mathbf{g}] = [\mathbf{h}]^{-1}$	(8.12)
but		
	$[\mathbf{t}] \neq [\mathbf{T}]^{-1}$	(8.13)
Example 10: Find [z] and	d[g] of a two-port network	k if
	$[T] = \begin{bmatrix} 10 & 1.5 \\ 2.5 & 4 \end{bmatrix}$	Ω
Solution:		-
If $A = 10, B = 1.5, C$	$z = 2, \mathbf{D} = 4$, the determ	ninant of the matrix is
Δ_T	$= \mathbf{A}\mathbf{D} - \mathbf{B}\mathbf{C} = 40 - 3$	= 37
,From Table 8.1		
$\mathbf{z}_{11} = \frac{\mathbf{A}}{\mathbf{C}} =$	$\frac{10}{2} = 5, \qquad \mathbf{z}_{12} = \frac{\Delta_T}{\mathbf{C}}$	$=\frac{37}{2}=18.5$
$\mathbf{z}_{21} = \frac{1}{\mathbf{C}}$	$=\frac{1}{2}=0.5,$ $\mathbf{z}_{22}=\frac{\mathbf{I}}{\mathbf{c}}$	$\frac{D}{C} = \frac{4}{2} = 2$
$\mathbf{g}_{11} = \frac{\mathbf{C}}{\mathbf{A}} = \frac{2}{10}$	$= 0.2, \qquad \mathbf{g}_{12} = -\frac{\Delta_T}{\mathbf{A}}$	$r = -\frac{37}{10} = -3.7$
$\mathbf{g}_{21} = \frac{1}{\mathbf{A}} = -$	$\frac{1}{10} = 0.1, \qquad \mathbf{g}_{22} = \frac{\mathbf{B}}{\mathbf{A}}$	$=\frac{1.5}{10}=0.15$
Thus,		
$[\mathbf{z}] = \begin{bmatrix} 5\\0.5 \end{bmatrix}$	$\begin{bmatrix} 18.5\\2 \end{bmatrix} \Omega, \qquad [\mathbf{g}] = \begin{bmatrix} 0\\0 \end{bmatrix}$	$\begin{bmatrix} .2 & 8 & -3.7 \\ 0.1 & 0.15 & \Omega \end{bmatrix}$
	1 [m] 0	
H.W.10: Determine $[y]$	and [T] of a two-port network $[z] = \begin{bmatrix} 6 & 4 \\ 4 & c \end{bmatrix} $	ork whose z parameters are Ω
Answer:	<u> </u>	
$[\mathbf{y}] = \begin{bmatrix} 0.3 & -0.2\\ -0.2 & 0.3 \end{bmatrix} $	$\mathbf{S}, [\mathbf{T}] = \begin{bmatrix} 1.5 & 5 \Omega \\ 0.25 \mathrm{S} & 1.5 \end{bmatrix}$	·].

University of Diyala		Electrical Circuits
Engineering College		2nd Class
Electronic Department	Year (2015-2016)	Lecturer : Wisam N. AL-Obaidi

Example 11: Obtain the *y* parameters of the op amp circuit in Fig. 1. Show that the circuit has no z parameters

Solution:

Since no current can enter the input terminals of the op amp, $I_1 = 0$, which can be expressed in terms of V_1 and V_2 as

> $\mathbf{I}_1 = 0\mathbf{V}_1 + 0\mathbf{V}_2$ (1)

Comparing this with Eq.(3.1) gives

$$y_{11} = 0 = y_{12}$$

Also,

$$\mathbf{V}_2 = R_3 \mathbf{I}_2 + \mathbf{I}_o (R_1 + R_2)$$

where I_o is the current through R_1 and R_2 . But $I_o = V_1/R_1$. Hence,

$$\mathbf{V}_2 = R_3 \mathbf{I}_2 + \frac{\mathbf{V}_1 (R_1 + R_2)}{R_1}$$

which can be written as

$$\mathbf{I}_2 = -\frac{(R_1 + R_2)}{R_1 R_3} \mathbf{V}_1 + \frac{\mathbf{V}_2}{R_3} \qquad \mathbf{V}_1$$

Comparing this with Eq.(3.1) shows that

$$\mathbf{y}_{21} = -\frac{(R_1 + R_2)}{R_1 R_3}, \qquad \mathbf{y}_{22} = \frac{1}{R_3}$$

The determinant of the [y] matrix is

$$\Delta_y = \mathbf{y}_{11}\mathbf{y}_{22} - \mathbf{y}_{12}\mathbf{y}_{21} = 0$$

Since $\Delta_{y} = 0$, the [y] matrix has no inverse; therefore, the [z] matrix does not exist according to Eq. (8.4). Note that the circuit is not reciprocal because of the active element

H.W.11: Find the *z* parameters of the op amp circuit in Fig. Show that the circuit has no *y* parameters.

 R_2 Answer: $[\mathbf{z}] = \begin{bmatrix} R_1 & 0 \\ -R_2 & 0 \end{bmatrix}$ Since $[\mathbf{z}]^{-1}$ does not exist, $[\mathbf{y}]$ does not exist.

	2
	\diamond
	\propto
	X
	\succ
	\Diamond
	\diamond
	\diamond
	\times
	X
	X
	\mathbf{k}
	\Diamond
	\diamond
	\propto
	\times
	X
	\succ
	$\mathbf{\nabla}$
	\otimes
	X
	X
	\mathbf{k}
	\diamond
	\propto
	X
	X
	X
	\mathbf{x}
	\Diamond
	\Diamond
	\diamond
	\sim
	X
	Σ
	\Diamond
	\diamond
	\propto
	\mathbf{X}
	\Diamond
	\Diamond
	\Diamond
	\diamond
	\aleph
	\times
	X
	X
	X
	\succ
	\Diamond
	\Diamond
	\diamond
	\propto
-	k

University of Diyala		Electrical Circuits
Engineering College		2nd Class
Electronic Department	Year (2015-2016)	Lecturer : Wisam N. AL-Obaidi

8) Interconnection of Networks

A large, complex network may be divided into subnetworks for the purposes of analysis and design. The subnetworks are modeled as twoport networks, interconnected to form the original network.

The interconnection can be in series, in parallel, or in cascade. Although the interconnected network can be described by any of the six parameter sets, a certain set of parameters may have a definite advantage. For example, when the networks are in series, their individual z parameters add up to give the z parameters of the larger network. When they are in parallel, their individual y parameters add up to give the y parameters of the larger network. When they are cascaded, their individual transmission parameters can be multiplied together to get the *transmission parameters* of the larger network.

8.1) series connection

Consider the two two-port networks (in Fig. 9.1.) The networks are in series because their input currents are the same and their voltages add. In addition, each network has a common reference, and when the circuits are placed in series, the common reference points of each circuit are connected together. For network N_a ,

Fig. 9.1 Series connection of .two two-port networks

 $V_{1a} = z_{11a}I_{1a} + z_{12a}I_{2a}$ $\mathbf{V}_{2a} = \mathbf{z}_{21a}\mathbf{I}_{1a} + \mathbf{z}_{22a}\mathbf{I}_{2a}$

and for network N_b ,

$$\mathbf{V}_{1b} = \mathbf{z}_{11b}\mathbf{I}_{1b} + \mathbf{z}_{12b}\mathbf{I}_{2b}$$
$$\mathbf{V}_{2b} = \mathbf{z}_{21b}\mathbf{I}_{1b} + \mathbf{z}_{22b}\mathbf{I}_{2b}$$

We notice from Fig.9.1 that

$$\mathbf{I}_1 = \mathbf{I}_{1a} = \mathbf{I}_{1b}, \qquad \mathbf{I}_2 = \mathbf{I}_{2a} = \mathbf{I}_2$$

and that

$$\mathbf{V}_{1} = \mathbf{V}_{1a} + \mathbf{V}_{1b} = (\mathbf{z}_{11a} + \mathbf{z}_{11b})\mathbf{I}_{1} + (\mathbf{z}_{12a})\mathbf{V}_{2} = \mathbf{V}_{2a} + \mathbf{V}_{2b} = (\mathbf{z}_{21a} + \mathbf{z}_{21b})\mathbf{I}_{1} + (\mathbf{z}_{22a})\mathbf{I}_{22a}$$

University of Diyala		Electrical Circuits
Engineering College		2nd Class
Electronic Department	Year (2015-2016)	Lecturer : Wisam N. AL-Obaidi

Thus, the z parameters for the overall network are

$$\begin{bmatrix} \mathbf{z}_{11} & \mathbf{z}_{12} \\ \mathbf{z}_{21} & \mathbf{z}_{22} \end{bmatrix} = \begin{bmatrix} \mathbf{z}_{11a} + \mathbf{z}_{11b} & \mathbf{z}_{12a} + \mathbf{z}_{12b} \\ \mathbf{z}_{21a} + \mathbf{z}_{21b} & \mathbf{z}_{22a} + \mathbf{z}_{22b} \end{bmatrix}$$
(9.5)

or

.2

$$[\mathbf{z}] = [\mathbf{z}_a] + [\mathbf{z}_b]$$
(9.6)

z parameters for the overall network are the sum of the *z* parameters for the individual networks. This can be extended to *n* networks in series. If two two-port networks in the [h] model, for example, are connected in series, we use Table 8.1 to convert the **h** to **z** and then apply Eq. (9.6). We finally convert the result back to **h** using Table 8.1

<u>8.2) parallel connection</u>

Two two-port networks are in *parallel* when their port voltages are equal and the port currents of the larger network are the sums of the individual port currents. In addition, each circuit must have a common reference and when the networks are connected together, they must all have their common references tied together. The parallel connection of two two-port networks is shown in Fig. 9.2. For the two networks,

$$\mathbf{I}_{1a} = \mathbf{y}_{11a}\mathbf{V}_{1a} + \mathbf{y}_{12a}\mathbf{V}_{2a}$$
$$\mathbf{I}_{2a} = \mathbf{y}_{21a}\mathbf{V}_{1a} + \mathbf{y}_{22a}\mathbf{V}_{2a}$$

$$\mathbf{I}_{1b} = \mathbf{y}_{11b}\mathbf{V}_{1b} + \mathbf{y}_{12b}\mathbf{V}_{2b}$$
$$\mathbf{I}_{2a} = \mathbf{y}_{21b}\mathbf{V}_{1b} + \mathbf{y}_{22b}\mathbf{V}_{2b}$$

$$V_1 = V_{1a} = V_{1b},$$
 $V_2 = V_{2a} = V_{2b}$ (9.9a)
 $I_1 = I_{1a} + I_{1b},$ $I_2 = I_{2a} + I_{2b}$ (9.9b)

Fig. 9.2 Parallel connection of .two two-port networks

(9.8)

(9.7)

University of Diyala Enaineerina Colleae		Electrical Circuits 2nd Class
Electronic Department	Year (2015-2016)	Lecturer : Wisam N. AL-Obaidi
Substituting Eqs. (9.7) $I_1 = (y)$ $I_2 = (y)$	and (9.8) into Eq. (9.9b) yields $_{11a} + \mathbf{y}_{11b})\mathbf{V}_1 + (\mathbf{y}_{12a} + \mathbf{y}_{12b})\mathbf{V}_2$ $_{21a} + \mathbf{y}_{21b})\mathbf{V}_1 + (\mathbf{y}_{22a} + \mathbf{y}_{22b})\mathbf{V}_2$	(9.10)
Thus, the y parameters $\begin{bmatrix} y_{11} & y_1 \\ y_{21} & y_2 \end{bmatrix}$ or	s for the overall network are $\begin{bmatrix} \mathbf{y}_{11a} + \mathbf{y}_{11b} & \mathbf{y}_{12a} + \mathbf{y}_{12b} \\ \mathbf{y}_{21a} + \mathbf{y}_{21b} & \mathbf{y}_{22a} + \mathbf{y}_{22b} \end{bmatrix}$	(9.11)
	$[\mathbf{y}] = [\mathbf{y}_a] + [\mathbf{y}_b]$	(9.12)
showing that the <i>y para</i> individual networks. Th	<i>meters</i> of the overall network are e result can be extended to <i>n</i> two-	the sum of the <i>y</i> parameters of the port networks in parallel.
8.3) cascaded connection Two networks are said connection of two two networks,	n to be <i>cascaded</i> when the output of p-port networks in cascade is s	one is the input of the other. The shown in Fig. 9.3. For the two
	$\begin{bmatrix} \mathbf{A}_{a} & \mathbf{B}_{a} \\ \mathbf{I}_{1a} \end{bmatrix} = \begin{bmatrix} \mathbf{A}_{a} & \mathbf{B}_{a} \\ \mathbf{C}_{a} & \mathbf{D}_{a} \end{bmatrix} \begin{bmatrix} \mathbf{V}_{2a} \\ -\mathbf{I}_{2a} \end{bmatrix}$	(9.13)
	$\begin{bmatrix} \mathbf{A}_{b} & \mathbf{B}_{b} \\ \mathbf{C}_{b} & \mathbf{D}_{b} \end{bmatrix} \begin{bmatrix} \mathbf{V}_{2b} \\ -\mathbf{I}_{2b} \end{bmatrix}$	(9.14)
From Fig. 9.3 $\begin{bmatrix} \mathbf{V}_1 \\ \mathbf{I}_1 \end{bmatrix} = \begin{bmatrix} \mathbf{V}_{1a} \\ \mathbf{I}_{1a} \end{bmatrix},$	$\begin{bmatrix} \mathbf{V}_{2a} \\ -\mathbf{I}_{2a} \end{bmatrix} = \begin{bmatrix} \mathbf{V}_{1b} \\ \mathbf{I}_{1b} \end{bmatrix}, \begin{bmatrix} \mathbf{V}_{2b} \\ -\mathbf{I}_{2b} \end{bmatrix}$	$ = \begin{bmatrix} \mathbf{V}_2 \\ -\mathbf{I}_2 \end{bmatrix} $ (9.15)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$N_b \qquad \begin{array}{c} \mathbf{I}_{2b} & \mathbf{I}_2 \\ \mathbf{V}_{2b} & \mathbf{V}_2 \\ - & - & - \\ \mathbf{O} & \mathbf{V}_2 \end{array}$
Figure 9.3	Cascade connection of two two-	port networks
	<29 29 29 29	~~~~~

$$I_{1} = (\mathbf{y}_{11a} + \mathbf{y}_{11b})\mathbf{V}_{1} + (\mathbf{y}_{12a} + \mathbf{y}_{12b})\mathbf{V}_{2}$$

$$I_{2} = (\mathbf{y}_{21a} + \mathbf{y}_{21b})\mathbf{V}_{1} + (\mathbf{y}_{22a} + \mathbf{y}_{22b})\mathbf{V}_{2}$$
(9.10)

$$\begin{bmatrix} \mathbf{y}_{11} & \mathbf{y}_{12} \\ \mathbf{y}_{21} & \mathbf{y}_{22} \end{bmatrix} = \begin{bmatrix} \mathbf{y}_{11a} + \mathbf{y}_{11b} & \mathbf{y}_{12a} + \mathbf{y}_{12b} \\ \mathbf{y}_{21a} + \mathbf{y}_{21b} & \mathbf{y}_{22a} + \mathbf{y}_{22b} \end{bmatrix}$$
(9.11)

$$[\mathbf{y}] = [\mathbf{y}_a] + [\mathbf{y}_b]$$
(9.12)

8.3) cascaded connection

$$\begin{bmatrix} \mathbf{V}_{1a} \\ \mathbf{I}_{1a} \end{bmatrix} = \begin{bmatrix} \mathbf{A}_a & \mathbf{B}_a \\ \mathbf{C}_a & \mathbf{D}_a \end{bmatrix} \begin{bmatrix} \mathbf{V}_{2a} \\ -\mathbf{I}_{2a} \end{bmatrix}$$
(9.13)
$$\begin{bmatrix} \mathbf{V}_{1b} \\ \mathbf{I}_{1b} \end{bmatrix} = \begin{bmatrix} \mathbf{A}_b & \mathbf{B}_b \\ \mathbf{C}_b & \mathbf{D}_b \end{bmatrix} \begin{bmatrix} \mathbf{V}_{2b} \\ -\mathbf{I}_{2b} \end{bmatrix}$$
(9.14)

$$\begin{bmatrix} \mathbf{V}_{1a} \\ \mathbf{I}_{1} \end{bmatrix} = \begin{bmatrix} \mathbf{V}_{1a} \\ \mathbf{I}_{1a} \end{bmatrix}, \qquad \begin{bmatrix} \mathbf{V}_{2a} \\ -\mathbf{I}_{2a} \end{bmatrix} = \begin{bmatrix} \mathbf{V}_{1b} \\ \mathbf{I}_{1b} \end{bmatrix}, \qquad \begin{bmatrix} \mathbf{V}_{2b} \\ -\mathbf{I}_{2b} \end{bmatrix} = \begin{bmatrix} \mathbf{V}_{2} \\ -\mathbf{I}_{2} \end{bmatrix}$$
(9.15)

University of Diyala		Electrical Circuits
Engineering College		2nd Class
Electronic Department	Year (2015-2016)	Lecturer : Wisam N. AL-Obaidi

Substituting these into Eqs. (9.13) and (9.14),

 $\begin{bmatrix} \mathbf{V}_1 \\ \mathbf{I}_1 \end{bmatrix} = \begin{bmatrix} \mathbf{A}_a & \mathbf{B}_a \\ \mathbf{C}_a & \mathbf{D}_a \end{bmatrix} \begin{bmatrix} \mathbf{A}_b & \mathbf{B}_b \\ \mathbf{C}_b & \mathbf{D}_b \end{bmatrix} \begin{bmatrix} \mathbf{V}_2 \\ -\mathbf{I}_2 \end{bmatrix}$ (9.16)

Thus, the transmission parameters for the overall network are the product of the transmission parameters for the individual transmission parameters:

or

$[\mathbf{T}] = [\mathbf{T}_a][\mathbf{T}_b]$	(9.18)
---	--------

It is this property that makes the transmission parameters so useful. Keep in mind that the multiplication of the matrices must be in the order in which the networks Na and Nb are cascaded.

	University of Diyala Engineering College Electronic Department	Year (2015-2016)	Electrical Circuits 2nd Class Lecturer : Wisam N. AL-Obaidi
--	--	------------------	---

Also, at the input port

$$\mathbf{V}_1 = \mathbf{V}_s - 5\mathbf{I}_1 \tag{3}$$

and at the output port

$$\mathbf{V}_2 = -20\mathbf{I}_2 \quad \Rightarrow \quad \mathbf{I}_2 = -\frac{\mathbf{V}_2}{20} \tag{4}$$

Substituting Eqs. (3) and (4) into Eq. (1) gives

$$\mathbf{V}_{s} - 5\mathbf{I}_{1} = 22\mathbf{I}_{1} - \frac{18}{20}\mathbf{V}_{2} \quad \Rightarrow \quad \mathbf{V}_{s} = 27\mathbf{I}_{1} - 0.9\mathbf{V}_{2} \quad (5)$$

while substituting Eq. (4) into Eq. (2) yields

$$\mathbf{V}_2 = 18\mathbf{I}_1 - \frac{30}{20}\mathbf{V}_2 \implies \mathbf{I}_1 = \frac{2.5}{18}\mathbf{V}_2$$
 (6)

Substituting Eq. (6) into Eq. (15), we get

$$\mathbf{V}_s = 27 \times \frac{2.5}{18} \mathbf{V}_2 - 0.9 \mathbf{V}_2 = 2.85 \mathbf{V}_2$$

And so,

$$\frac{\mathbf{V}_2}{\mathbf{V}_5} = \frac{1}{2.85} = 0.3509$$

